Quickstart
This page presents a quickstart guide to solve a nonlinear problem with MadNLP.
As a demonstration, we show how to implement the HS15 nonlinear problem from the Hock & Schittkowski collection, first by using a nonlinear modeler and then by specifying the derivatives manually.
The HS15 problem is defined as:
\[\begin{aligned} \min_{x_1, x_2} \; & 100 \times (x_2 - x_1^2)^2 +(1 - x_1)^2 \\ \text{subject to} \quad & x_1 \times x_2 \geq 1 \\ & x_1 + x_2^2 \geq 0 \\ & x_1 \leq 0.5 \end{aligned} \]
Despite its small dimension, its resolution remains challenging as the problem is nonlinear nonconvex. Note that HS15 encompasses one bound constraint ($x_1 \leq 0.5$) and two generic constraints.
Using a nonlinear modeler: JuMP.jl
The easiest way to implement a nonlinear problem is to use a nonlinear modeler as JuMP. In JuMP, the user just has to pass the structure of the problem, the computation of the first- and second-order derivatives being handled automatically.
Using JuMP's syntax, the HS15 problem translates to
using JuMP
model = Model()
@variable(model, x1 <= 0.5)
@variable(model, x2)
@objective(model, Min, 100.0 * (x2 - x1^2)^2 + (1.0 - x1)^2)
@constraint(model, x1 * x2 >= 1.0)
@constraint(model, x1 + x2^2 >= 0.0)
println(model)
Min (100.0 * ((-x1² + x2) ^ 2.0)) + (x1² - 2 x1 + 1)
Subject to
x1*x2 ≥ 1
x2² + x1 ≥ 0
x1 ≤ 0.5
Then, solving HS15 with MadNLP directly translates to
using MadNLP
JuMP.set_optimizer(model, MadNLP.Optimizer)
JuMP.optimize!(model)
This is MadNLP version v0.8.5, running with umfpack
Number of nonzeros in constraint Jacobian............: 4
Number of nonzeros in Lagrangian Hessian.............: 5
Total number of variables............................: 2
variables with only lower bounds: 0
variables with lower and upper bounds: 0
variables with only upper bounds: 1
Total number of equality constraints.................: 0
Total number of inequality constraints...............: 2
inequality constraints with only lower bounds: 2
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 1.0000000e+00 1.01e+00 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 9.9758855e-01 1.00e+00 4.61e+01 -1.0 1.01e+00 - 4.29e-01 9.80e-03h 1
2 9.9664309e-01 1.00e+00 5.00e+02 -1.0 4.81e+00 - 1.00e+00 9.93e-05h 1
3 1.3615174e+00 9.99e-01 4.41e+02 -1.0 5.73e+02 - 9.98e-05 4.71e-04H 1
4 1.3742697e+00 9.99e-01 3.59e+02 -1.0 3.90e+01 - 2.30e-02 2.68e-05h 1
5 1.4692139e+00 9.99e-01 4.94e+02 -1.0 5.07e+01 - 2.76e-04 1.46e-04h 1
6 3.1727722e+00 9.97e-01 3.76e+02 -1.0 8.08e+01 - 1.88e-06 9.77e-04h 11
7 3.1726497e+00 9.97e-01 2.12e+02 -1.0 9.98e-01 - 1.00e+00 7.94e-04h 1
8 8.2350196e+00 9.85e-01 4.29e+02 -1.0 1.51e+01 - 1.44e-03 7.81e-03h 8
9 8.2918294e+00 9.84e-01 4.71e+02 -1.0 3.94e+00 - 2.51e-01 2.49e-04h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
10 4.0282504e+01 8.72e-01 4.57e+02 -1.0 4.94e+00 - 1.00e+00 6.25e-02h 5
11 2.8603735e+02 2.66e-01 4.85e+02 -1.0 1.16e+00 - 5.54e-01 5.00e-01h 2
12 3.9918132e+02 6.89e-03 2.90e+02 -1.0 1.90e-01 - 8.75e-01 1.00e+00h 1
13 3.9783737e+02 3.06e-04 2.86e+02 -1.0 4.68e-02 - 2.50e-02 1.00e+00h 1
14 3.5241265e+02 2.33e-02 2.70e+01 -1.0 4.59e-01 - 1.00e+00 1.00e+00h 1
15 3.5876922e+02 7.37e-03 4.63e+00 -1.0 2.66e-01 - 6.99e-01 1.00e+00h 1
16 3.6046938e+02 7.34e-05 8.17e-03 -1.0 3.14e-02 - 1.00e+00 1.00e+00h 1
17 3.6038250e+02 2.71e-07 8.49e-05 -2.5 1.42e-03 - 1.00e+00 1.00e+00h 1
18 3.6037976e+02 2.63e-10 7.95e-08 -5.7 4.63e-05 - 1.00e+00 1.00e+00h 1
19 3.6037976e+02 2.22e-16 5.96e-14 -8.6 3.06e-08 - 1.00e+00 1.00e+00h 1
Number of Iterations....: 19
(scaled) (unscaled)
Objective...............: 3.6037976240508465e+02 3.6037976240508465e+02
Dual infeasibility......: 5.9563010060664213e-14 5.9563010060664213e-14
Constraint violation....: 2.2204460492503131e-16 2.2204460492503131e-16
Complementarity.........: 1.5755252497616872e-09 1.5755252497616872e-09
Overall NLP error.......: 1.5755252497616872e-09 1.5755252497616872e-09
Number of objective function evaluations = 47
Number of objective gradient evaluations = 20
Number of constraint evaluations = 47
Number of constraint Jacobian evaluations = 20
Number of Lagrangian Hessian evaluations = 19
Total wall-clock secs in solver (w/o fun. eval./lin. alg.) = 9.692
Total wall-clock secs in linear solver = 0.017
Total wall-clock secs in NLP function evaluations = 1.132
Total wall-clock secs = 10.840
EXIT: Optimal Solution Found (tol = 1.0e-08).
Under the hood, JuMP builds a nonlinear model with a sparse AD backend to evaluate the first and second-order derivatives of the objective and the constraints. Internally, MadNLP takes as input the callbacks generated by JuMP and wraps them inside a MadNLP.MOIModel
.
Specifying the derivatives by hand: NLPModels.jl
Alternatively, we can compute the derivatives manually and define directly a NLPModel
associated to our problem. This second option, although more complicated, gives us more flexibility and comes without boilerplate.
We define a new NLPModel
structure simply as:
struct HS15Model <: NLPModels.AbstractNLPModel{Float64,Vector{Float64}}
meta::NLPModels.NLPModelMeta{Float64, Vector{Float64}}
counters::NLPModels.Counters
end
function HS15Model(x0)
return HS15Model(
NLPModels.NLPModelMeta(
2, #nvar
ncon = 2,
nnzj = 4,
nnzh = 3,
x0 = x0,
y0 = zeros(2),
lvar = [-Inf, -Inf],
uvar = [0.5, Inf],
lcon = [1.0, 0.0],
ucon = [Inf, Inf],
minimize = true
),
NLPModels.Counters()
)
end
Main.HS15Model
This structure takes as input the initial position x0
and generates a AbstractNLPModel
. NLPModelMeta
stores the information about the structure of the problem (variables and constraints' lower and upper bounds, number of variables, number of constraints, ...). Counters
is just a utility storing the number of time each callbacks is being called.
The objective function takes as input a HS15Model
instance and a vector with dimension 2 storing the current values for $x_1$ and $x_2$:
function NLPModels.obj(nlp::HS15Model, x::AbstractVector)
return 100.0 * (x[2] - x[1]^2)^2 + (1.0 - x[1])^2
end
The corresponding gradient writes (note that we update the values of the gradient g
inplace):
function NLPModels.grad!(nlp::HS15Model, x::AbstractVector, g::AbstractVector)
z = x[2] - x[1]^2
g[1] = -400.0 * z * x[1] - 2.0 * (1.0 - x[1])
g[2] = 200.0 * z
return g
end
Similarly, we define the constraints
function NLPModels.cons!(nlp::HS15Model, x::AbstractVector, c::AbstractVector)
c[1] = x[1] * x[2]
c[2] = x[1] + x[2]^2
return c
end
and the associated Jacobian
function NLPModels.jac_structure!(nlp::HS15Model, I::AbstractVector{T}, J::AbstractVector{T}) where T
copyto!(I, [1, 1, 2, 2])
copyto!(J, [1, 2, 1, 2])
end
function NLPModels.jac_coord!(nlp::HS15Model, x::AbstractVector, J::AbstractVector)
J[1] = x[2] # (1, 1)
J[2] = x[1] # (1, 2)
J[3] = 1.0 # (2, 1)
J[4] = 2*x[2] # (2, 2)
return J
end
As the Jacobian is sparse, we have to provide its sparsity structure.
It remains to implement the Hessian of the Lagrangian for a HS15Model
. The Lagrangian of the problem writes
\[L(x_1, x_2, y_1, y_2) = 100 \times (x_2 - x_1^2)^2 +(1 - x_1)^2 + y_1 \times (x_1 \times x_2) + y_2 \times (x_1 + x_2^2)\]
and we aim at evaluating its second-order derivative $\nabla^2_{xx}L(x_1, x_2, y_1, y_2)$.
We first have to define the sparsity structure of the Hessian, which is assumed to be sparse. The Hessian is a symmetric matrix, and by convention we pass only the lower-triangular part of the matrix to the solver. Hence, we define the sparsity structure as
function NLPModels.hess_structure!(nlp::HS15Model, I::AbstractVector{T}, J::AbstractVector{T}) where T
copyto!(I, [1, 2, 2])
copyto!(J, [1, 1, 2])
end
Now that the sparsity structure is defined, the associated Hessian writes down:
function NLPModels.hess_coord!(nlp::HS15Model, x, y, H::AbstractVector; obj_weight=1.0)
# Objective
H[1] = obj_weight * (-400.0 * x[2] + 1200.0 * x[1]^2 + 2.0)
H[2] = obj_weight * (-400.0 * x[1])
H[3] = obj_weight * 200.0
# First constraint
H[2] += y[1] * 1.0
# Second constraint
H[3] += y[2] * 2.0
return H
end
Once the problem specified in NLPModels's syntax, we can create a new MadNLP instance and solve it:
x0 = zeros(2) # initial position
nlp = HS15Model(x0)
solver = MadNLP.MadNLPSolver(nlp; print_level=MadNLP.INFO)
results = MadNLP.solve!(solver)
"Execution stats: Optimal Solution Found (tol = 1.0e-08)."
MadNLP converges in 19 iterations to a (local) optimal solution. MadNLP returns a MadNLPExecutionStats
storing all the results. We can query the primal and the dual solutions respectively by
results.solution
2-element Vector{Float64}:
-0.7921232178470455
-1.2624298435831807
and
results.multipliers
2-element Vector{Float64}:
-477.17046873911977
-3.126200044003132e-9