Linear solvers
We suppose that the KKT system has been assembled previously into a given AbstractKKTSystem
. Then, it remains to compute the Newton step by solving the KKT system for a given right-hand-side (given as a AbstractKKTVector
). That's exactly the role of the linear solver.
If we do not assume any structure, the KKT system writes in generic form
\[K x = b\]
with $K$ the KKT matrix and $b$ the current right-hand-side. MadNLP provides a suite of specialized linear solvers to solve the linear system.
Inertia detection
If the matrix $K$ has negative eigenvalues, we have no guarantee that the solution of the KKT system is a descent direction with regards to the original nonlinear problem. That's the reason why most of the linear solvers compute the inertia of the linear system when factorizing the matrix $K$. The inertia counts the number of positive, negative and zero eigenvalues in the matrix. If the inertia does not meet a given criteria, then the matrix $K$ is regularized by adding a multiple of the identity to it: $K_r = K + \alpha I$.
We recall that the inertia of a matrix $K$ is given as a triplet $(n,m,p)$, with $n$ the number of positive eigenvalues, $m$ the number of negative eigenvalues and $p$ the number of zero eigenvalues.
Factorization algorithm
In nonlinear programming, it is common to employ a LBL factorization to decompose the symmetric indefinite matrix $K$, as this algorithm returns the inertia of the matrix directly as a result of the factorization.
When MadNLP runs in inertia-free mode, the algorithm does not require to compute the inertia when factorizing the matrix $K$. In that case, MadNLP can use a classical LU or QR factorization to solve the linear system $Kx = b$.
Solving a KKT system with MadNLP
We suppose available a AbstractKKTSystem
kkt
, properly assembled following the procedure presented previously. We can query the assembled matrix $K$ as
K = MadNLP.get_kkt(kkt)
6×6 SparseArrays.SparseMatrixCSC{Float64, Int32} with 13 stored entries:
2.0 ⋅ ⋅ ⋅ ⋅ ⋅
0.0 200.0 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 0.0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0.0 ⋅ ⋅
0.0 0.0 -1.0 ⋅ 0.0 ⋅
1.0 0.0 ⋅ -1.0 ⋅ 0.0
Then, if we want to pass the KKT matrix K
to Lapack, this translates to
linear_solver = LapackCPUSolver(K)
LapackCPUSolver{Float64, SparseArrays.SparseMatrixCSC{Float64, Int32}}(sparse(Int32[1, 2, 5, 6, 2, 5, 6, 3, 5, 4, 6, 5, 6], [1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6], [2.0, 0.0, 0.0, 1.0, 200.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, 0.0, 0.0], 6, 6), [5.0e-324 0.0 … 5.0e-324 0.0; 5.0e-324 5.0e-324 … 0.0 0.0; … ; 1.5e-323 1.0e-323 … 0.0 0.0; 5.0e-324 0.0 … 0.0 0.0], [6.9208328696983e-310], -1, Base.RefValue{Int64}(0), Dict{Symbol, Any}(), MadNLP.LapackOptions(MadNLP.BUNCHKAUFMAN), MadNLP.MadNLPLogger(MadNLP.INFO, MadNLP.INFO, nothing))
The instance linear_solver
does not copy the matrix $K$ and instead keep a reference to it.
linear_solver.A === K
true
That way every time we re-assemble the matrix $K$ in kkt
, the values are directly updated inside linear_solver
.
To compute the factorization inside linear_solver
, one simply as to call:
MadNLP.factorize!(linear_solver)
LapackCPUSolver{Float64, SparseArrays.SparseMatrixCSC{Float64, Int32}}(sparse(Int32[1, 2, 5, 6, 2, 5, 6, 3, 5, 4, 6, 5, 6], [1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6], [2.0, 0.0, 0.0, 1.0, 200.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, 0.0, 0.0], 6, 6), [2.0 0.0 … 0.0 0.0; 0.0 200.0 … 0.0 0.0; … ; 0.0 0.0 … 0.0 0.0; 0.5 0.0 … -1.0 -0.5], [384.0, 3.0434428e-316, 6.92087537767355e-310, 4.6e-322, 3.0434412e-316, 6.92087537767374e-310, 1.21446e-319, 3.0434428e-316, 3.043444e-316, 6.92087537767473e-310 … 0.0, 6.9208753777375e-310, 8.099e-320, 3.0435748e-316, 0.0, 6.92087537773768e-310, 6.87e-321, 1.0708774e-316, 2.3341953706e-313, 6.92087534199563e-310], 384, Base.RefValue{Int64}(0), Dict{Symbol, Any}(:ipiv => [1, 2, -5, -5, -6, -6]), MadNLP.LapackOptions(MadNLP.BUNCHKAUFMAN), MadNLP.MadNLPLogger(MadNLP.INFO, MadNLP.INFO, nothing))
Once the factorization computed, computing the backsolve for a right-hand-side b
amounts to
nk = size(kkt, 1)
b = rand(nk)
MadNLP.solve!(linear_solver, b)
6-element Vector{Float64}:
0.5836062254771192
0.002328734818189201
-0.3539543748301015
-0.35266426745676804
-0.48544198463898247
-0.30819025899365116
The values of b
being modified inplace to store the solution $x$ of the linear system $Kx =b$.